

2260B Series Multi-Range Programming DC Power Supplies

Verification Procedure

077-1048-01/ August 2015

扫码二维码关注我们 或查找微信公众号:海洋仪器

Table of Contents

Preparing for Verification	2
List of Equipment for Verification	3
Constant Voltage Tests	4
Voltage Programming and Measurement Accuracy	4
CV Load Regulation	5
CV Line Regulation	6
CV Ripple and Noise	7
Transient Recovery Time	8
Constant Current Tests	10
Current Programming and Measurement Accuracy	10
CC Load Regulation	11
CC Line Regulation	12
Verification Test Record Form	13
30V	13
80V	15
250V	17
800V	19

Preparing for Verification

Note 🖄	In order to ensure performance accuracy, we recommend you to verify all items listed in this chapter at once.			
When to verify the specification	 When using the power supply in a new environment After replacing one of the major internal modules, such as front panel or power supply PCB When you need to make sure that the power supply is malfunctioning or not 			
Verification Environment	 Location: Indoor, no direct sunlight, dust free Relative Humidity: < 80% Temperature: +18~+28°C Warm-up time: ≥ 30 minutes 			
When the verification fails	 Calibrate the instrument when a corresponding calibration item exists. For other items, send the power supply back to the factory for repair. 			

List of Equipment for Verification

Here is the list of all equipment used in the service operations.

Туре	Specifications	Recommended Model	
Digital Voltmeter	• Resolution: 1 uV @ 1V	Keithley Model	
	• Readout: 6 1/2 digits	2000 or equivalent	
	• 3A (0.1Ω) 0.02%, TC=10ppm/°C		
Current Shunt	 30A (0.01Ω) 0.02%, TC=10ppm/°C 		
	 300A (0.001Ω) 0.02%, TC=10ppm/°C 		
	• Sensitivity: 1 mV	Tektronix	
Oscilloscope	• Bandwidth Limit: 20 MHz	DPO4014B or	
	• Probe: 1:1 with JEITA RC-9131B	equivalent	
AC Power Source	 Adjustable to highest rated input voltage range. 	Ametek 3001i or equivalent	
	• Power: 3000 VA		
Electronic Load	• 60V, 240A minimum, with transient capability and a slew rate of 1A/us or better.		
	 500V, 60A minimum, with transient capability and a slew rate of 0.4A/us or better 	• Ametek SLH, SLM or PLA series electronic loads or equivalent	
	• 1000V, 12A minimum, with transient capability and a slew rate of 0.2A/us or better		

Constant Voltage Tests

Voltage Programming and Measurement Accuracy

Connection

Fig. 1

Background	This test verifies that the voltage programming and
	measurement functions are within specifications.

Procedure	1.	Turn off the power supply and connect the DVM from the PCS-1000 directly across the +S and -S terminals as shown in the fig. 1 connection.
	2.	Turn on the power supply and program the output voltage to zero and the output current to its maximum programmable value (Imax) with the load off. The CV indicator should be on and the output current reading should be approximately zero.
	3.	Record the output voltage readings on the digital voltmeter (DVM) and the voltage measured over the interface. The readings should be within the limits specified in the test record form for the appropriate model under Voltage Programming and Measurement, Minimum Voltage Vout.
	4.	Program the output voltage to its full-scale rating.
	5.	Record the output voltage readings on the DVM and the voltage measured over the interface. The readings

the voltage measured over the interface. The readings should be within the limits specified in the test record form for the appropriate model under Voltage Programming and Measurement, Rated Voltage Vout.

Verifying Voltage Programming and Measurement Accuracy is complete

CV Load Regulation

- 1. Turn off the power supply and connect the DVM from the PCS-1000 and an electronic load as shown in the fig. 2 connection.
- 2. Turn on the power supply and program the output current to its maximum programmable value (Imax) and the output voltage to its full scale value.
- 3. Set the electronic load for the output's full-scale current. The CV indicator on the front panel must be on. If it is not, adjust the load so that the output current drops slightly.
- 4. Record the output voltage reading from the DVM.
- 5. Open the load and record the voltage reading from the DVM again. The difference between the DVM readings in steps 4 and 5 is the load effect, which should not exceed the value listed in the test record form for the appropriate model under CV Load Regulation.

CV Line Regulation

Connection

Fig. 3

Background	This test measures the change in output voltage that results from a change in AC line voltage from the minimum to maximum value within the line voltage specifications.
	specifications.

Procedure

- 1. Turn off the power supply and connect the ac power source.
- 2. Connect the DVM from the PCS-1000 and an electronic load as shown in the fig. 3 connection. Set the variable ac voltage to nominal line voltage.
- 3. Turn on the power supply and program the output current to its maximum programmable value (Imax) and the output voltage to its full-scale value.
- 4. Set the electronic load for the output's full-scale current. The CV indicator on the front panel must be on. If it is not, adjust the load so that the output current drops slightly.
- 5. Adjust the ac power source to the low-line voltage (85 VAC for 100/120 nominal line; 170 VAC for 200/240 nominal line).
- 6. Record the output voltage reading from the DVM.
- 7. Adjust the ac power source to the high-line voltage (132 VAC for 100/120 nominal line; 265 VAC for 200/240 nominal line).
- 8. Record the output voltage reading on the DVM. The difference between the DVM reading in steps 5 and 7 is the source effect, which should not exceed the value listed in the test record form for the appropriate model under CV Line Regulation.

北京海洋兴业科技股份有限公司(证券代码:839145)

CV Ripple and Noise

Verifying CV Ripple and Noise is complete

Transient Recovery Time

7. The output voltage should return to within the specified voltage in the specified time following the 50% to 100% load change. Check transients by triggering on the positive and negative slope. Record the voltage at time "t" in the performance test record form under Transient Response.

Verifying Transient Recovery Time Regulation is complete

Constant Current Tests

Current Programming and Measurement Accuracy

Connection Fig. 8	AC Power Source		
Background	This test verifies that the current programming and measurement functions are within specifications.		
Procedure	Turn off the power supply and connect the current shunt directly across the output as shown in the fig. 8 connection.		
	2. Turn on the power supply and program the output voltage to its full-scale value and the output current to zero. The CC indicator should be on and the output voltage reading should be approximately zero.		
	3. Record the output current readings on the precision current shunt (PCS-1000) and the current measured over the interface. The readings should be within the limits specified in the test record form for the appropriate model under Current Programming and Measurement, Minimum Current Iout.		
	4. Program the output current to its full-scale rating.		
	5. Record the output current readings on the precision current shunt (PCS-1000) and the voltage measured over the interface. The readings should be within the limits specified in the test record form for the appropriate model under Current Programming and Measurement, Rated Current Iout.		

Verifying Current Programming and Measurement Accuracy is complete

CC Load Regulation

Connection Fig. 9	
Background	This test measures the change in output current resulting from a change in output voltage from full scale to short circuit.
Procedure	1. Turn off the power supply and connect the precision current shunt and electronic load as shown in the fig. 9 connection.
	2. Turn on the power supply and program the output current to its maximum programmable value (Imax) and the output voltage to its full-scale value.
	3. With the electronic load in CV mode, set it for the output's full scale voltage. The CC indicator on the front panel must be on. If it is not, adjust the load so that the voltage drops slightly.
	4. Record the output current reading from the PCS-1000.
	5. Short the electronic load. Record this value (Iout). The difference in the current readings in steps 3 and 4 is the load effect, which should not exceed the value listed in the test record form for the appropriate model under CC Load Regulation.

Verifying CC Load Regulation is complete

CC Line Regulation

Connection Fig. 10

Background	This test measures the change in output current that results from a change in AC line voltage from the
	minimum to maximum value within the line voltage specifications.

Procedure		Turn off the power supply and connect the ac power source	
	2.	Connect the current shunt and electronic load as shown in the fig. 10 connection. Set the variable ac voltage to nominal line voltage.	
	3.	Turn on the power supply and program the output current to its full-scale value and the output voltage to its maximum programmable value (Vmax).	
	4.	With the electronic load in CV mode, set it for the output's full scale voltage. The CC indicator on the front panel must be on. If it is not, adjust the load so that the voltage drops slightly.	
	5.	Adjust the ac power source to the low-line voltage (85 VAC for 100/120 nominal line; 170 VAC for 200/240 nominal line).	
	6.	Record the output current reading from the PCS-1000.	
	7.	Adjust the ac power source to the high-line voltage (132 VAC for 100/120 nominal line; 265 VAC for 200/240 nominal line).	
	8.	Record the output current reading on the PCS-1000. The difference between the PCS-1000 reading in steps 5 and 7 is the source effect, which should not exceed the value listed in the test record form for the appropriate model under CC Line Regulation.	

Verifying CC Line Regulation is complete

Verification Test Record Form

Print out these pages and record the results. Keep it with the power supply.

30V

Model	□ 2260B-30-36	□ 2260B-30-72	□ 2260B-30-108
Serial number			
Date	Year	Month	Date
Verified by	Name		
	Company/Contact_		
Environment	Temperature	°C Humidity	_%

Constant Voltage Test	Model	Min. Specs.	Results	Max. Specs.			
Voltage Programming and Measurement							
Minimum Voltage V _{out}	All	- 10 mV		+ 10 mV			
Measurement Accuracy	All	Vout - 10 mV		Vout $+ 10 \text{ mV}$			
Rated Voltage Vout	All	29.960 V		30.040 V			
Measurement Accuracy	All	Vout - 40 mV		Vout + 40 mV			
CV Line Regulation	All	- 18 mV		+ 18 mV			
CV Load Regulation	All	- 20 mV		+ 20 mV			
CV Ripple and Noise							
peak-to-peak	30-36	N/A		60 mV			
	30-72	N/A		80 mV			
	30-108	N/A		100 mV			
rms	30-36	N/A		7 mV			
	30-72	N/A		11 mV			
	30-108	N/A		14 mV			
Transient Response Time							
Voltage @ 1ms	All	- 40 mV		+ 40 mV			
Constant Current Test	Model	Min. Specs.	Results	Max. Specs.			
Current Programming and Measurement							
Minimum Current Iout	30-36	- 30 mA		+ 30 mA			
	30-72	- 60 mA		+ 60 mA			
	30-108	- 100 mA		+ 100 mA			
Measurement Accuracy	30-36	Iout - 30 mA		Iout $+$ 30 mA			
	30-72	Iout - 60 mA		Iout $+$ 60 mA			

2260B Verification Procedure

	30-108	Iout - 100 mA	Iout + 100 mA
Rated Current Iout	30-36	35.934 A	36.066 A
	30-72	71.898 A	72.102 A
	30-108	107.862 A	108.138 A
Measurement Accuracy	30-36	Iout - 66 mA	Iout + 66 mA
	30-72	Iout - 102 mA	Iout + 102 mA
	30-108	Iout - 138 mA	Iout + 138 mA
CC Line Regulation	30-36	- 41 mA	+ 41 mA
	30-72	- 77 mA	+ 77 mA
	30-108	- 108 mA	+ 108 mA
CC Load Regulation	30-36	- 41 mA	+ 41 mA
	30-72	- 77 mA	+ 77 mA
	30-108	- 108 mA	+ 108 mA

80V			
Model	2260B-80-13	2260B-80-27	2260B-80-40
Serial number			
Date	Year	Month	_ Date
Verified by	Name		_
	Company/Conta	ct	
Environment	Temperature	°C Humidity	%

Constant Voltage Test	Model	Min. Specs.	Results	Max. Specs.
Voltage Programming and	d Measure	ment		
Minimum Voltage Vout	All	- 10 mV		+ 10 mV
Measurement Accuracy	All	Vout - 10 mV		Vout + 10 mV
Rated Voltage Vout	All	79.910 V		80.090 V
Measurement Accuracy	All	Vout - 90 mV		Vout + 90 mV
CV Line Regulation	All	- 43 mV		+ 43 mV
CV Load Regulation	All	- 45 mV		+ 45 mV
CV Ripple and Noise				
peak-to-peak	80-13	N/A		60 mV
	80-27	N/A		80 mV
	80-40	N/A		100 mV
rms	80-13	N/A		7 mV
	80-27	N/A		11 mV
	80-40	N/A		14 mV
Transient Response Time				
Voltage @ 1ms	All	- 90 mV		+ 90 mV
Constant Current Test	Model	Min. Specs.	Results	Max. Specs.
Current Programming an	d Measure	ment		
Minimum Current Iout	80-13	- 10 mA		+ 10 mA
	80-27	- 30 mA		+ 30 mA
	80-40	- 40 mA		+ 40 mA
Measurement Accuracy	80-13	Iout - 10 mA		Iout + 10 mA
	80-27	Iout - 30 mA		Iout $+ 30 \text{ mA}$
	80-40	Iout - 40 mA		Iout $+ 40 \text{ mA}$
Rated Current Iout	80-13	13.476 A		13.524 A
	80-27	26.943 A		27.057 A
	80-40	40.419 A		40.581 A

2260B Verification Procedure

Measurement Accu	racy 80-13	Iout - 24 mA	Iout + 24 mA		
	80-27	Iout - 57 mA	Iout $+$ 57 mA		
	80-40	Iout - 81 mA	Iout + 81 mA		
CC Line Regulation	80-13	- 18.5 mA	+ 18.5 mA		
	80-27	- 32 mA	+ 32 mA		
	80-40	- 45.5 mA	+ 45.5 mA		
CC Load Regulation	80-13	- 18.5 mA	+ 18.5 mA		
	80-27	- 32 mA	+ 32 mA		
	80-40	- 45.5 mA	+ 45.5 mA		
250V					
Model	2260B-250-	-4 2260B-	250-9 2260B-250-13		
Serial number					
Date	Year	Month	Date		
Verified by	Name				
	Company/Co				
Environment	Temperature_	°C Humic	lity%		

Constant Voltage Test	Model	Min. Specs.	Results	Max. Specs.
Voltage Programming and	d Measure	ment		
Minimum Voltage V _{out}	All	- 200 mV		+200 mV
Measurement Accuracy	All	Vout - 200 mV		Vout + 200 mV
Rated Voltage Vout	All	249.55 V		250.45 V
Measurement Accuracy	All	Vout - 450 mV		Vout $+450 \text{ mV}$
CV Line Regulation	All	- 128 mV		+ 128 mV
CV Load Regulation	All	- 130 mV		+ 130 mV
CV Ripple and Noise				-
peak-to-peak	250-4	N/A		80 mV
	250-9	N/A		100 mV
	250-13	N/A		120 mV
rms	250-4	N/A		15 mV
	250-9	N/A		15 mV
	250-13	N/A		15 mV

Transient Response Time				
Voltage @ 1ms	All	- 260 mV		+ 260 mV
Constant Current Test	Model	Min. Specs.	Results	Max. Specs.
Current Programming an	d Measure	ement		
Minimum Current Iout	250-4	- 5 mA		+ 5 mA
	250-9	- 10 mA		+ 10 mA
	250-13	- 15 mA		+ 15 mA
Measurement Accuracy	250-4	Iout - 5 mA		Iout + 5 mA
	250-9	Iout - 10 mA		Iout $+$ 10 mA
	250-13	Iout - 15 mA		Iout + 15 mA
Rated Current Iout	250-4	4.4905 A		4.5095 A
	250-9	8.9810 A		9.0190 A
	250-13	13.471 A		13.529 A
Measurement Accuracy	250-4	Iout - 9.5 mA		Iout $+ 9.5 \text{ mA}$
	250-9	Iout - 19 mA		Iout $+$ 19 mA
	250-13	Iout - 29 mA		Iout + 29 mA
CC Line Regulation	250-4	- 9.5 mA		+ 9.5 mA
	250-9	- 14 mA		+ 14 mA
	250-13	- 18.5 mA		+ 18.5 mA
CC Load Regulation	250-4	- 9.5 mA		+ 9.5 mA
	250-9	- 14 mA		+ 14 mA
	250-13	- 18.5 mA		+ 18.5 mA

800V

Model	2260B-800-1	2260B-800-2	2260B-800-4
Serial number			
Date	Year	Month	Date
Verified by	Name		
	Company/Contact		
Environment	Temperature	_°C Humidity	%

Constant Voltage Test	Model	Min. Specs.	Results	Max. Specs.
Voltage Programming and	l Measurer	ment		
Minimum Voltage V _{out}	All	- 400 mV		+ 400 mV
Measurement Accuracy	All	Vout - 400 mV		Vout + 400 mV
Rated Voltage Vout	All	798.8 V		201.2 V
Measurement Accuracy	All	Vout - 1.2 V		Vout + 1.2 V
CV Line Regulation	All	- 403 mV		+ 403 mV
CV Load Regulation	All	- 405 mV		+ 405 mV
CV Ripple and Noise				_
peak-to-peak	800-1	N/A	_	150 mV
	800-2	N/A		200 mV
	800-4	N/A		200 mV
rms	800-1	N/A		30 mV
	800-2	N/A		30 mV
	800-4	N/A		30 mV
Transient Response Time				
Voltage @ 1ms	All	- 260 mV		+ 260 mV
Constant Current Test	Model	Min. Specs.	Results	Max. Specs.
Current Programming an	d Measure	ment		
Minimum Current Iout	800-1	- 2 mA		+ 2 mA
	800-2	- 4 mA		+ 4 mA
	800-4	- 6 mA		+ 6 mA
Measurement Accuracy	800-1	Iout - 2 mA		Iout $+ 2 \text{ mA}$
	800-2	Iout - 4 mA		Iout $+ 4 \text{ mA}$
	800-4	Iout - 6 mA		Iout $+ 6 \text{ mA}$
Rated Current Iout	800-1	1.4365 A		1.4435 A
	800-2	2.8731 A		2.8869 A
	800-4	4.3096 A		4.3304 A

2260B Verification Procedure

Measurement Accuracy	800-1	Iout - 3.5 mA	Iout $+ 3.5 \text{ mA}$
	800-2	Iout - 6.9 mA	Iout $+ 6.9 \text{ mA}$
	800-4	Iout - 10.4 mA	Iout + 10.4 mA
CC Line Regulation	800-1	- 6.44 mA	+ 6.44 mA
	800-2	- 7.88 mA	+ 7.88 mA
	800-4	- 9.32 mA	+ 9.32 mA
CC Load Regulation	800-1	- 6.44 mA	+ 6.44 mA
	800-2	- 7.88 mA	+ 7.88 mA
	800-4	- 9.32 mA	+ 9.32 mA

[®]北京海洋兴业科技股份有限公司(证券代码: 839145)

北京市西三旗东黄平路19号龙旗广场4号楼(E座)906室 电话: 010-62176775 62178811 62176785 企业QQ: 800057747 维修QQ: 508005118 企业官网: www.hyxyyq.com

邮编: 100096 传真: 010-62176619 邮箱: market@oitek.com.cm 购线网: www.gooxian.net

扫描二维码关注我们 查找微信公众号:海洋仪器